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Abstract

We introduce a new structural model of stock returns generating process. The model as-
sumes that stock prices change in response to buy and sell bets arriving to the market place
as predicted by market microstructure invariance. These bets are shredded by traders into
sequences of transactions according to some bet-shredding algorithms. Arbitrageurs take
advantage of any noticeable returns predictability, and market makers clear the market.
This structural model is calibrated to match empirical time-series and cross-sectional pat-
terns of higher moments of returns. We find that historical idiosyncratic kurtoses of inac-
tively traded stocks are usually higher than that of actively traded stocks, whereas idiosyn-
cratic skewness is positive and stable across stocks, but decrease over time. We calibrate
implied hard-to-observe parameters of bet-shredding algorithms using the method of sim-
ulated moments, analyse its properties, and show how much shredding has increased over

time.
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Introduction

There is a long-standing debate on what is a good way to model security price dynamics. It is
crucial for our understanding of financial markets. Progress has been made in this important
area, but there is still no fully satisfactory answer as to the mechanism of how returns process
is generated. We propose a novel structural model for price dynamics within the paradigm of
market microstructure invariance, developed recently by Kyle and Obizhaeva (2016¢) and found
to be successful in explaining a number of empirical regularities in the data.

It is known that empirical price processes depart from the Brownian motion, and price
changes are not distributed as normal random variables. Several alternative models have been
proposed in the literature. Mandelbrot (1963) suggests that price changes may be better de-
scribed by a stable Pareto distribution with fat tails. Mandelbrot and Taylor (1967) and Clark
(1973) propose that price processes seem to be closely related to the Brownian motions that
evolves notin calendar time but rather in some business time, which is linked to either arrival of
transactions or trading volume, respectively. Jones, Kaul and Lipson (1994), Hasbrouck (1999),
Ané and Geman (2000), Andersen et al. (2015) study what business clock best fits the data. In
comparison to these approaches, our structural model of returns dynamics comes from explicit
modelling of how traders trade in real financial markets.

The backbone of our model is the arrival process of investment ideas, or bets, placed by
fundamental traders into the market. This process has been earlier calibrated within the mi-
crostructure invariance paradigm by Kyle and Obizhaeva (2016¢) who suggested that bets ar-
rive according to a stochastic process with an expected arrival rate per day approximately pro-
portional to the 2/3 exponent of trading volume and volatility, and the distribution of bet sizes
closely resemble log-normal random variables with log-variance of 2.53. This large log-variance
implies frequent arrivals of very large bets. We assume that traders execute bets by splitting
them into sequences of transactions according to some bet-shredding algorithm in order to
reduce price impact; we model price impact in response to each transaction as suggested by
invariance-based market impact model. We also introduce arbitrageurs who implement order
anticipation algorithms based on predictive models to detect execution of large bets and trade
ahead of them with hope to make some money. Market makers clear the market.

The core idea of market microstructure invariance is that business time runs faster in liquid
markets and slower in illiquid markets, whereas a trading game itself that traders play remains
invariant. Our structural model ultimately differs across stocks and time periods, because it
is based on different arrival processes of bets. We also calibrate bet shredding parameters us-
ing the method of simulated moments in order to match the cross-sectional and time-series

variation in empirical moments of stock returns.



We update the evidence on cross-sectional and time-series properties of moments of daily
U.S. stock returns using the Center for Research in Security Prices (CRSP) database. We find that
idiosyncratic excess kurtoses tend to be positive and decrease with trading activity of stocks; the
ratio of idiosyncratic kurtosis for the median least active stocks to that of the most active stocks
is almost always greater than one, but this difference becomes less pronounced over time. The
total kurtosis without any adjustment for market returns is also larger for the less active stocks;
these patterns reverse over during market crashes, when kurtosis of liquid stocks becomes
bigger relative to kurtosis of illiquid stocks, possibly due to staleness of prices. The idiosyn-
cratic skewness does not exhibit any distinctive cross-sectional patterns and fluctuates over
time around a small positive value, often dropping to negative values during market crashes.

Our calibration allows us to discuss the properties of implied bet shredding parameters.
Under the assumption that traders target a fixed proportion of overall expected trading volume,
we find that traders target a bigger proportion when executing bets in less liquid securities. We
also find that bet-shredding has intensified over time, and now traders choose to execute bets
over two or three times longer horizons than in 1950s. The prevalence of shredding in modern
markets have been also documented empirically in Kyle, Obizhaeva and Tuzun (2016), Angel,
Harris and Spatt (2015), and Garvey, Huang and Wu (2017). Bet shredding is also optimal for
traders who seek to minimize transaction costs, as shown theoretically by Kyle, Obizhaeva and
Wang (2017). Our structural model can be used as a vehicle to gain insight into hard-to-observe
parameters of trading.

There are two different approaches to modelling securities returns. The first approach, usu-
ally preferred by economists, relies on calibration of structural equilibrium models in order to
make sure that models are internally consistent with market clearing and strategic optimizing
behavior of traders; the example is a structural framework of Campbell and Kyle (1993) that
helps to model permanent and temporary shocks to prices. The second approach, usually pre-
ferred by statisticians and econophysicists, relies on agency-based models that simulate actions
and interactions of traders to study their effects on the system as a whole, but often assume
mechanic—rather than driven by economic incentives—order placement strategies and price
formation process; examples include Cont and Bouchaud (2000), Farmer, Patelli and Zovko
(2005), Cont, Stoikov and Talreja (2010), and Ladley (2012), among others.

Our model is a combination of these two approaches, taking the best of both of them. On
the one hand, we pay careful attention to the modelling of how people trade as in agency-based
models. Indeed, our groups of market participants closely resemble the classification of Kir-
ilenko et al. (2017), who provide a micro-level empirical description of the structure of trading
in the market of the E-mini S&P 500 futures during the Flash crash on May 6, 2010. On the other
hand, each part of our model is guided by the insights of existing theories of financial eco-



nomics. Bets arrive according to general invariance predictions, which one can derive within
a number of equilibrium models such as the dynamics model of Kyle and Obizhaeva (2017)
and the one-period model of Kyle, Obizhaeva and Wang (2017). Bet-shredding algorithms are
similar to optimal trading strategies suggested by the literature on optimal execution, such as
Bertsimas and Lo (1998), Almgren and Chriss (2000), and Obizhaeva and Wang (2013) among
others. Arbitrageurs insure that prices follow a martingale and markets are efficient. Market
makers insure that markets clear.

This paper is organized as follows. Section I presents empirical analysis of time-series and
cross-sectional properties of moments for returns of the U.S. stock market. Section II describes
a structural model of returns dynamics based on market microstructure invariance with bet
shredding and arbitrage trading. Section III discuss its calibration and properties of implied

parameters. Section IV concludes.

1 Moments of Daily Returns: Empirical Analysis

1.1 Data

We examine cross-sectional and time-series properties of moments of daily U.S. stock returns
using the Center for Research in Security Prices (CRSP) database. Only common stocks (CRSP
share codes of 10 and 11) listed on the New York Stock Exchange (NYSE), the American Stock
Exchange (Amex), NASDAQ, and NYSE Arca in the period of January 1926 through December
2016 are included in the sample. ADRs, REITS, and closed-end funds are excluded.

Estimates of higher moments are very sensitive to large price changes, outliers, and errors in
the data. We do not windsorize of the data, because we do not want to eliminate most important
large but rare observations. Instead, we carefully clean the data by trying to filter out outliers
and errors, while keeping large observations caused by execution of large bets, market crashes,
or other events.

First, we adjust for stale prices. For each security, the CRSP mixes two time series. For days
with transactions, the database reports last transaction prices at the close. For days with no
transactions, the database reports averages of bid and ask prices, marking these averages with
a negative sign; these observations are often not representative of true prices, at which traders
could actually transact during that day. The mixture two price series often leads to large tem-
porary deviations in the composite series. For example, for the six days from May 17, 2010 to
May 24, 2010, one finds the following prices in the CRSP for the stock of the firm Ikonics: $7.1,
$6.52, -$7.225, -$12.76, -$7.07, and $6.81; the three negative prices mean that there were no

transactions at these three days and the average bid-ask prices are reported instead of actual



transaction prices. If one would simply change their negative signs into positives sign and cal-
culate time-series of returns, then he will get -8, 11, 77, -45, and -4 percents with large positive
price change followed by large negative price changes in the middle of the sample. At the same
time, Yahoo Finance reports $7.1, $6.52, $6.52, $6.52, $6.52, and $6.81 for the same days imply-
ing returns of -8, 0, 0, 0, and 4 percents. The two time series will have very different estimates of
moments, especially for higher moments such as kurtosis. To circumvent this problem, we use
only transaction prices when available, accumulate returns from the very last transaction price
reported, and assign returns of zero to all days with no transactions.

Second, there remain many large zigzag price changes in the sample. It is usually unclear
whether these are actual prices that we need to keep or errors that we need to eliminate. As
describe in Fischer (1963), the process of creating the CRSP database required a lot of effort and
involved a lot of data cleaning. Some errors though may still exist due to mistakes in original
data collected by exchanges, incorrect conversion of the data from paper books into electronic
databases, inconsistent adjustment for splits and dividends, confusion with tickers, inaccurate
treatment of trades in error accounts that are often cancelled within a few days, and many other
reasons. We checked manually whether large zigzag price deviations in the CRSP coincide with
price patterns in other datasets or whether they can be attributed to some events. Since unex-
plained temporary price swings occur especially often in the earlier pre-war part of the sample,
we choose to focus on the data from January 1950 to December 2016.

Third, we eliminate daily observations with fewer than 100 shares traded, because transac-
tion prices on these days may also be not representative of true prices. Small trades may be
used as vehicles for side payments between traders, soft commissions, or transactions by mar-
ket makers who are required to maintain some minimal trading activity in illiquid stocks.

Finally, we exclude stocks with more than fifteen no-trade days in a month and daily volatil-
ity of less than one percent. We also exclude stocks with the median of prices being less than $5,
because estimates of their returns moments are very unstable, as errors are especially critical
for these stocks.

We excluded about 45% of observations from the original sample. The final sample includes
1,576,834 observations for 1,089 months and 19,922 stocks. The number of stocks vary signifi-
cantly throughout the sample. Initially, there were only NYSE stocks. The number of stocks rose
steadily from 500 stocks in 1926 to 1,100 by 1962, then jumped to about 2000 in July 1962 and
5000 in November 1982, when the Amex and NASDAQ stocks were included into the sample,
respectively. The number of stocks slightly declined after the market crash of October 1987 and
increased during the dot-com bubble 1995 though 2000, peaking at 7300 in 1997. Afterwards,
the number of stocks dropped, and it is equal to about 4000 at the end of the sample.



1.2 Estimation of Moments

The estimate moments of log-returns are known to be sensitive to outliers. We next obtain these
estimates using robust estimation methods.

We modify the sample estimates of higher moments that usually use the sample estimates
of means and standard deviations and that are prone to several biases. First, the sample means
introduce forward-looking biases by making returns look less volatile than they are in reality. In
our estimation of higher moments, we instead assume that daily stock returns have zero mean.

Second, the sample standard deviation tends to be overestimated during volatile periods,
and these biased estimates of volatility in turn make the sample estimates of kurtosis under-
estimated. We assume means of zero instead sample means and pre-estimate volatility over
the previous three-month period, using one of the robust iterative estimation methods; we also
consider only three-month periods with more than fifteen non-zero observations of returns
and average price above $5. We first estimate volatility over the entire three-month sample,
then exclude observations with absolute values bigger than two sigma, estimate volatility again
and repeat this procedure until either the difference in subsequent volatility estimates becomes
less than one basis point or the number of excluded outliers exceeds five percent of the origi-
nal sample. These are conservative measure of volatility robust to outliers. For robustness,
we also consider volatility estimated using Inter Quantile Range methods (IQR-a@ methods),
as proposed by Aucremanne(2004) and Kimber(1990), respectively, as well as Median Abso-
lute Deviation methods (MAD-f methods), as proposed by Iglewicz and Hoaglin (1993) and
Hampel(1974); all results (not reported) are qualitatively and quantitatively similar to our main
reported findings.!

For each month and each stock, we then calculate the estimates of skewness and kurtosis
using the formulas for sample moments but replacing sample means and sample standard de-
viations with our robust estimates. We apply this procedure for both the sample of returns and
the sample of idiosyncratic returns, obtained by subtracting the contemporaneous values of

index returns under the assumption that all stocks’ betas are equal to one.

1.3 Time-Series and Cross-Section of Empirical Moments

To examine empirically cross-sectional patterns, we split all stocks in ten groups based on daily
trading activity, an important characteristic of securities reflecting the speed with which mar-

kets operate and levels of liquidity. Trading activity is defined as the product of dollar volume

1T IQR-a method, volatility is estimated on reduced sample [Po5 — & - [P75 — Psgl, P75 + & - [P50 — Pas]], where Py
denote the percentile x, with most outliers excluded (@ = 3 and a = 1.5). In MAD- 8 method, volatility is estimated
on entire sample excluding observations with |M;| > 8, where M; = 0.6745 - (x; — med(X))/ MAD and MAD =
med(|x; — med(X)]) (=3 and B =2).



and volatility and represent the total amount of risk transferred per day. For each stock and
each month, we calculate trading activity as the product of the average daily dollar volume and
volatility over the previous three months. We then sort all stocks each month into ten groups
based on trading activity. The breakpoints are chosen to be 30th, 50th, 60th, 70th, 75th, 80th,
85th, 90th, 95th of the NYSE traded stocks. Group 1 consists of least actively traded stocks.
Group 10 consists of most actively traded stocks.

Table 1 presents a detailed time-series and cross-sectional summary statistics for high mo-
ments of idiosyncratic daily returns. The medians of sample moments (volatility, skewness, and
kurtosis) are shown for seven decades between 1950 and 2016 and for trading activity groups 1,
3,5, 8, and 10.

Figure 1 shows the monthly time series of the 12-month moving averages of the sample me-
dians of sample kurtosis of idiosyncratic daily stock returns for the same trading activity groups.
The estimates are averaged over a twelve month period to smooth out unstable estimates. Fig-
ure 3 shows similar moving averages of monthly kurtosis estimates for daily stock returns with-
out any adjustment for market movements. We can draw several conclusions from table 1 and
figure 1.

First, idiosyncratic kurtoses tend to decrease with trading activity. The daily kurtoses of the
least liquid stocks are stable, ranging between 6.60 and 8.47 across decades and thus implying
fat tails. The daily kurtoses of the most liquid stocks slightly increase over time from 2.66 in
decade 1950-1960 to 4.23 in 2010-2016; their values remain being close to 3, suggesting that
distributions of their daily idiosyncratic returns closely resemble the log-normal. Figure 2 re-
veals similar patterns. The figure shows that, depicted by the solid horizontal line, the ratio of
idiosyncratic kurtoses of stocks in group 1 to kurtoses of stocks in group 10 is bigger than one for
each month throughout the sample, except for the month of September 2008 when uncertainty
reached its peak during the financial crisis. The difference in kurtoses of least and most active
stocks becomes less pronounced over time. Similar patterns are observed for kurtoses of total
daily returns in figure 4. Ratios of kurtoses of stocks in group 1 to kurtoses of stocks in group
10 drop below one only during a few episodes in 1956, 1962-1963, 1987-1988, and 1993-1994;
these breaks might be attributed to Kennedy slide in 1962, market crash in October 1987, and
mini-crash in October 1989, respectively.

Second, the monthly time series of the 12-month moving averages of the sample kurtosis
medians in figures 1 and 3 are relatively stable over time, but exhibit several significant spikes
in May 1962, October 1987, August 1998, September 2008, and August 2011. Even though the
events that triggered large price changes are relatively short lived, these spikes continue for
twelve months due to our calculations of moving averages using the twelve lags. These spikes

correspond to volatile times mentioned above as well as to the LTCM collapse in 1998. During



these periods, the idiosyncratic kurtoses continue to be larger for less liquid stocks, but the
patterns for kurtosis sometimes flip, and kurtosis of liquid stocks becomes bigger relative to
kurtosis of illiquid stocks, possibly due to staleness of their price.

Figure 5 shows the time series of idiosyncratic skewness for the trading activity groups. I1d-
iosyncratic skewness is usually slightly positive, fluctuating between 0.06 to 0.36 across decades
and decreasing over time, on average, from 0.26 in decade 1950-1960 to 0.10 in 2010-2016, as
shown in table 1. During market dislocations, skewness tends to drop. Skewness does not ex-
hibit any distinctive cross-sectional patterns. It remains to be close to zero, thus suggesting that
the distribution of returns is close to a log-normal.

Figure 6 shows monthly time series of 12-month moving average of median sample volatility
of idiosyncratic daily for the five trading activity groups with two pronounced spikes during the
dot-com bubble in 2000-2001 and financial crisis of 2008-2009.

In what follows, we will propose a structural model of price dynamics and calibrate it to

match the cross-sectional and time-series patterns of higher moments in table 1.

2 Invariance-Implied Structural Model of Price Dynamics

In this section, we describe a structural model of stock returns dynamics in financial markets.
There are three market participants: traders, intermediaries, and arbitragers. Traders are insti-
tutional asset managers and retail investors who arrive to the market with some trading ideas,
or bets, and execute these bets by shredding them over time based on bet shredding algorithms.
We assume that these bets are generated according to the implications of market microstruc-
ture invariance. Intermediaries such as traditional market makers and high-frequency traders
clear the market by taking the other side of these transactions. Meanwhile arbitrageurs try to

detect large bets of traders in the order flow and profit by trading ahead of them.

2.1 Bets of Traders

We start by describing trading strategies of institutional asset managers and retail investors.
These traders submit bets based on either some investment ideas or their needs to rebalance
portfolios. Bets move prices and induce volatility. Small bets lead to small price changes, large
bets trigger large price changes. Invariance implies a specific structure of order flow, i.e. the
number of bets and distribution of their size for different markets.
Consider a stock i at day ¢ with returns volatility o, share volume V;;, dollar price P;;, and
trading activity
Wit=0jt-Pjs-Vijr. (1)



Let y;; denote the number of bets placed at day ¢ in the market of stock i. Suppose that a
sequence of bets executed at day # is Q;js1, Qir2,.-Qiry;,; €ach kth bet Q;4 is measured in shares,
bets are positive for buys and negative for sells, both arriving with equal probabilities of 1/2. Let
Qi: denote a random variable whose probability distribution represents the signed size of bets
and let ¥;; denote a random variable whose probability distribution represents the expected
arrival rate.

Kyle and Obizhaeva (2016b) calibrate these distributions using the sample of portfolio tran-
sitions executed over the period 2001 through 2005 in the U.S. stock market as the main bench-
mark sample. As the first-order approximation, they find that |Q;:| is well described by a log-
normal distribution with log-variance aé =2.53 and y;; is a Poisson variable with the mean ¥;;

the means of both of these random variables vary across days ¢ and stocks i,

i} [ Wit ]2/3 ©)

Vit =99"110.02)(20)(10°)

- ,
ln[|Q”| ~-571-=.In

3 [m]~ 8:-Z, Z~NOD. 3)

The 2/3 exponents in these formulas are implications of invariance; the constants 85, —5.71,
and 2.53 are calibrated from the data. For the benchmark stock with daily volatility o = 0.02,
volume V = 108, and price P = 40, for example, there are on average 85 bets per day, their me-
dian dollar size is exp(—5.71) - V- P or $132,000, and their average dollar size is exp(—5.71 +
0.50'2Q) -V - P or $470,000. Both the number of bets y;; and their size |Q;:| increase with dollar
volume and returns volatility.

Intermediaries take the other side of these bets by setting market clearing prices.? Kyle and
Obizhaeva (2016b) analyse by how much each bet on average moves prices and calibrate several
price impact models. The first model is the linear price impact model. According to its log-
linear version, buying or selling Q shares of a stock with a current stock price P moves the price

on average by AP(Q) such that
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where & = 8.21 and A = 2.50 are calibrated from the data and exponents —1/3 and 1/3 are im-
plications of invariance. The first model is the square root price impact model. According to its

log-linear version, buying or selling Q shares of a stock with a current stock price P moves the

2Under the assumption that the volume multiplier { = 2, as consistent with our assumption that intermediaries
take the other side of these bets, and the portfolio transition size multiplier § = 1.



price on average by AP(Q) such that
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where & = 2.08 and A = 12.08 are calibrated from the data and exponents —1/3 and 1/2 are
implications of invariance.

Equations (2) and (3) describe the order-flow process for traders. Equations (4) and (5) de-
scribe how intermediaries update prices in response to each bet. Combining price impact of all
bets executed during the day, one can calculate implied daily price changes. The set of these

equations thus describe a basic structural model for daily returns, as implied by invariance.

2.2 Price Changes Upon Execution of One Bet

We next examine moments of price changes induced by one bet. Since buys and sells arrive
with equal probabilities, the distribution of signed bet sizes Q;; is symmetric, and all of its odd
moments are equal to zero. For example, E[Q;;] =0and E[Q} ] =0.

Since the distribution (3) of unsigned bet size |Q;;| = exp (i + 0o - Z) is a log-normal with a

2

0= 2.53, its moments can be calculated as,

log-mean of 1 and a log-variance of o

~ 1 - 2
E[lQit|p] :fqp.é. 1 exp(—M) dq = epzaé/2+pMQ. (6)
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This implies the kurtosis of price changes upon execution of a bet. For the linear price impact
model, it is equal to kurtosis of a bet size itself,
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For the square root price impact model, it is equal to
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kurt[AP(Q;/)] = kurt[|Q~it|1/2] =

These values are much larger than kurtosis of 3 for a normal distribution, especially for the

linear model.



2.3 Price Changes upon Execution of Bet Sequences with No Bet Shredding

Daily price change AP is equal to the sum of all price changes in response to execution of inde-
pendent and identically distributed bets. If there are y bets executed in day ¢ and stock 7, then

kurtosis of daily returns is

Y kurt [AP(Q;/)]

kurt[AP|¥;; =y] = kurt 9)

AP(Qkir) ] =
k=1
where kurt[AP(Q;,)] is defined in equations (7) and (8).

To find unconditional kurtosis, we should integrate out y in equation (9), because the num-
ber of bets executed per day is a random variable. If no bet arrives, then we should not update
our estimates of kurtosis. The kurtosis of the random sum of random variables with expected
Poisson arrival rate y;; is given by
+oo [ kurt [AP(Q;)] y_{r

kurt[AP] = Ey (kurt [AP|7; =y]) = )

; i e Vil (10)
j=1 :

The infinite sum 1% [y//j!] is a converging series, a series {1/} is a bounded from above,
monotone sequence, and kurt[AP(Q;,)] is a constant. Applying Abel’s convergence test, we
find that the infinite sum (10) converges, though it does not have a close form solution.

Itis possible to derive the lower bound for the unconditional kurtosis using Jensen’s inequal-

ity. Indeed,

kurt[AP] = Ey

(11)

kurt [AP(Q;y)] ) _ kurt [AP(Q;/)] _ kurt [AP(Q;f)]
Yit By (Vi) Yit '

The lower bound is equal to the kurtosis of daily returns (9) conditional of the assumption that
the number of bets ¥;; coincides with the average arrival rate ¥ ;;.

Our simulation analysis shows that this lower bound provides a good approximation for
the daily kurtosis of most stocks, as implied by a structural model. The differences created
by uncertainty in the Poisson arrival rates and non-linearities of log-returns are insignificant.
For a stock with median dollar volume and returns variance in each of the ten trading activity
groups, we run 1000 Monte-Carlo simulations and calculate the average theoretical kurtosis
with its standard errors. The simulations are done based on a structural model of price process
with bet arrival rate in equation (2), distribution of bet sizes in equation (3), and price impact
model (4). We also calculate the lower bound using equation (11).

Table 2 shows that the lower bound tracks closely the average kurtosis for all groups, except

10



the group of least actively traded stocks. The percentage differences in the series of two esti-
mates are 29%, 3%, 2%, 1%, and 0% for groups 1, 3, 5, 8, and 10, respectively. A large difference
for the first group may reflect an upward bias in theoretical estimates of kurtosis. Since the
arrival rate for this group is only 4 bets per day, some simulated days have no bets and their ex-
clusion from calculations of the average introduces a bias. The bet arrival rates for other groups
range from 23 to 232, and this effect is less pronounced. As long as the arrival rate of bets is not
too low, the lower bound is a reasonable proxy for kurtosis of daily returns. We get the following
approximation,

kurt[AP(Q;)]

Yit

kurt[AP] = (12)

Using equations (7) and (8), the lower bound for daily kurtosis is equal to 22,000/y;; and 12/y;;
for the linear and square root models, respectively.

Kurtosis of price changes per each bet is the same across stocks, but the number of bets per
day is larger for more liquid stocks. Therefore daily returns of more liquid stocks have lower
kurtosis. The number of bets y;; per day increases with trading activity at a rate of 2/3 in equa-
tion (2). Equation (12) then implies that kurtosis decreases with the trading activity approx-
imately at the same rate, i.e., with 2/3 power of the trading activity. In table 2, for example,
the ratio of kurtosis of most inactively traded stock to kurtosis of most actively traded stock is
about 77 (= 7214/95); it is similar to the ratio of their trading activities in 2/3 power equal to 59
(= (3600/8)%/3).

Similar intuition suggests that kurtosis decrease with tenor of returns for a given security.
For example, kurtosis of weekly returns is expected to be lower than kurtosis of daily returns,
which in turn is expected to be lower than kurtosis of one-minute returns.

Our basic structural model implies the values of kurtosis that are too high relative to empir-
ical estimates. The average theoretical kurtosis in table 2 ranges between 95 and 7,214, whereas
empirical estimates in table 1 do not exceed 8.47, the level of average kurtoses for stocks in
group 1 for decade 1960-1970.

2.4 Price Changes upon Execution of Bet Sequences with Bet Shredding

So far we have assumed each bet is executed instantaneously. In reality, traders shred orders and
execute them over time in sequences of transactions to reduce transaction costs. Bet shredding
smooths out spikes in price dynamics and tends to make returns kurtoses smaller. We next con-
sider several modifications of our basic model that incorporate order shredding and arbitrage
trading. These models are more realistic and more flexible in their ability to match empirical
estimates.

Traders decide on “target” inventories and bets based on either their private information or

11



inventories shocks. Then, they gradually adjust actual inventories towards their targets. Let S7,
denote the cumulative target order imbalances for stock i at the end of day ¢, calculated as the

signed sum of all bets placed into the market place by that time,

Sit= 2 Qimk- (13)
m<t
Suppose next that each bet Q;,, is shredded into a sequence of transactions x;,,(s), where s is
a day count in execution package.
Let S;; denote cumulative realized order imbalance for stock i at the end of day ¢, calculated

as the signed sum of all transactions placed into the market by that time.

Sit=" ). Ximk(s). (14)
m<t,s<t

The structural model of trading (13) and (14) is consistent with the equilibrium strategies
in a continuous-time model of smooth trading of Kyle, Obizhaeva, Wang (2016). In that model,
symmetric, relatively overconfident, oligopolistic informed traders calculate target inventories
based on how their own estimates of the long-term dividend growth rate differ from the es-
timates of other traders. Since the market offers no instantaneous liquidity for block trades,
each trader only partially adjusts his inventory in the direction of a target inventory; the rate of
adjustment is determined by the deep parameters of the model, it is larger when private infor-
mation decays faster and when there is more disagreement between traders.

The difference between the time series of S?, and S;; depends on the specifics of bet shred-
ding algorithms. Bet shredding algorithms are not directly observable. We assume that each
algorithm is characterized by two main decisions. For each bet, traders first choose execution
horizon and then parameters of shredding method. We consider several alternative specifica-
tions.

First, traders determine an appropriate execution horizon Tj for each bet Q; . For exam-

ple, traders may target a fixed time horizon ¢, say one day,
Method-T(?): Tik=t. (15)

We refer to this algorithm as “Method-T(#)”; for example, “Method-T(1)” or “Method-T(5)”
correspond to cases when all trades are executed their bets over one day or one week.
Traders may also target a small fraction 7, say equal to 5%, of expected contemporaneous

volume Tj - Vig or Tigr - Vir- E[1Qi¢l],
|Qitk|=77'Titk'7_’it'E[|Q~it|]- (16)
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This implies the execution horizon that is linearly proportional to bet size,

|Qkit|

Method-V (n): Trir = — —,
. n'Yit'E[lQitl]

(17)

We refer to this algorithm as “Method-V(n)”; for example, “Method-V (0.05)” or “Method-V(0.10)”
for execution algorithms targeting 5 percent and 10 percent of daily volume, respectively.
Traders may also target to induce a small fraction 7, say equal to 5%, of expected returns
variance Tg;; - a?t under the assumption that each transaction is expected to move price by
A 1Qkitl,
(A 1Qxie)* =1 Teie - vie- A* - E[1Quel?]. (18)

This implies that the execution horizon is proportional to the square of bet size,

2
| Qi

Method—az(n): Trir = — .
TNy E[1Qul?]

(19)

We refer to this algorithm as “Method—az(n)”; for example, “Method-02(0.05)” or “Method-
02(0.10)” for execution algorithms targeting 5 percent and 10 percent of daily volatility, respec-
tively.

In all cases, larger bets are executed over longer period of time. In the third case (17) larger
bets are spread over longer periods of time than in the second case (19) and returns distribution
is expected to exhibit smaller kurtosis. For the square root impact model, targeting a given
fraction of returns variance is equivalent to targeting a given fraction of volume, so we do not
consider this case separately.

Next, traders have to choose an appropriate shredding method. We consider two bet shred-
ding methods. Each bet Qy;; can be shredded at a uniform rate and executed in equally-sized

transactions xy;;(S),

1Qirk]
Titk

Xirk(S) = , s=1,.Tjk. (20)

Bertsimas and Lo (2001) find that this simple execution is optimal when a risk-neutral trader
needs to execute an order.

Alternatively, each bet Q;;; can be shredded at a monotonically decreasing rate,

2sinh(0.5p)

Xit(8) = |Q;srlcosh(o(Tisr — s +0.5)) — ,
itk Qll’k Ptk smh(pT,-tk)

s=1,.Tis. 21)
where sinh and cosh are the hyperbolic sine and cosine functions. Each day a trader executes

some fraction of the remaining part of the bet, determined by parameter p. This parameter is

related to the speed of information decay, risk aversion, and riskiness of securities. The larger
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is parameter p, the faster the bet is executed. Almgren and Chriss (2000) finds that execution is
optimal when a risk-averse trader executes a bet. Similar solution can be also found in Grinold
and Kahn (1999).

We choose to focus on simple execution strategies. In reality, execution strategies are more
complicated. Execution algorithms are often price dependent, as discussed in Obizhaeva (2012).
Other order shredding algorithms are for example discussed in Gatheral and Schied (2013),
Schied and Schoeneborn (2009), and Obizhaeva and Wang (2013). If necessary, sophisticated
execution strategies may be built into our structural model as well.

The structural model for bet arrival (2) and (3) augmented with specific order shredding al-
gorithm represent the structural model describing the order-flow process. Together with price
impact model, they allow to construct implied time-series of prices. In what follows, we con-

sider linear price impact rule.

2.5 Price Dynamics with Shredding and Arbitrageurs

Bet shredding introduces positive autocorrelation in stock return process and makes future
price changes predictable. For example, execution of a large buy bet is expected to inject a pos-
itive trend into the price dynamics, while execution of a large sell bet induces a downward price
dynamics. Arbitrageurs notice that prices are not martingales and construct order anticipation
algorithms to detect execution of orders.

We next describe how to model trading by arbitrageurs. If intermediaries observed target
bet imbalances, they would set prices according to their market clearing rule,

P} =Ai- S5, (22)

and price changes would be unpredictable. In reality, intermediaries may at best identify only
actual signed order imbalances S;; and set prices as,

pit:/lit'sit- (23)

To the extent that unexecuted order imbalance Sft — §;j; are predictable based on past informa-
tion, these price process is not a martingale.

Arbitrageurs build a model to forecast S}, — S;; and trade E,{S;, — S;;} at day . When tar-
get order imbalances are higher than actual order imbalances, arbitrageurs buy ahead of other
traders. When target inventories are lower than actual inventories, arbitrageurs sell ahead of

other traders. Market makers set clearing prices based on the aggregate order flow of both
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traders and arbitrageurs,
Piy =E{P;} = Air-Sivr+ Air - Ee{S], — Sis} = i -E4{S] ) (24)

Trading by arbitrageurs restore martingale properties of stock prices and makes price process
P; = [E{Plf"t} a martingale based on arbitrageurs’ filtration. Essentially, the price is set based on
the market’s forecasts of current target imbalances.

Our structural model is flexible to be consistent with various predictive models of arbi-
trageurs. We suppose that arbitrageurs know daily volatility and daily volume of an asset. They
are also familiar with all invariance formulas and bet shredding algorithms that traders use. Ar-
bitrageurs thus can simulate hypothetical bet arrival process and how bets are shredded into
sequences of transactions. Then, they can perform a large estimation on the simulated sample
to build a model for forecasting unexecuted order imbalances.

This procedure can be summarized as follows,

1. Simulate N paths of bet histories for an asset with volume V;; and volatility o;; based on

formulas (2) and (3);

2. Using the conjectured parameters of bet shredding algorithm, aggregate bets and trans-
actions, calculating histories of target imbalances and actual imbalances, S7,  and S;; 5

for each of simulated paths n=1,..N;

3. Run a rolling-window predictive regression for unexecuted imbalances with k lags of lin-

ear and quadratic terms of realized past imbalances,

k k
EtS}, = Sitnt=a+ ) Brj-Sii—jn+ ) B2j- Sf.-yt_j,n +€m, t=1,..T,n=1,.N, (25)
j=1 j=1

to estimate coefficients ,31 jand ﬁg j»J =1,..k. For example, we use k = 5 as our benchmark

model, i.e. an arbitrageur using information on actual inventories over the previous week.

Equipped with estimated model ,31 j and ﬁg j»J = 1,..k, arbitrageurs construct forecasts based

on current information about past order imbalances S; ;—j, j = 1,..k, as
G A 2
*
EclS7, = Sisb=a+ ) P~ Si—j+B2j- S ;- (26)
j=1

This is a model for forecasting an unexecuted order imbalances.
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In what follows, we mostly apply bet shredding method that targets a given fraction of daily

volume, split all bets into equally-sized transactions, and assume a linear price impact function.

2.6 Properties of Simulated Returns

We first illustrate our structural model using the example of a hypothetical benchmark stock
with price P of $40 per share, daily volume V of one million shares, and daily volatility o of 2%
per day. This benchmark stock would belong to the bottom tercile of S&P 500.

We simulate 1,000 paths of 90-day bet arrival histories for the benchmark stock using formu-
las (2) and (3). We then apply several bet shredding algorithms by first selecting the execution
horizon depending on the fraction of daily volume targeted and second by shredding each bet
into a sequence of equally-sized transactions. The execution of some packages extends beyond
the boundary of a 90-day sample. We cut tails of these unfinished packages at the end of each
sample path, multiply remaining sequences by 1 or —1 with equal probabilities to model buy
and sell orders, and insert them into the beginning of the same sample path. This mimics a
typical situations when some of large bets arrived in the past are continuing to get executed at
the beginning of selected sample paths.

We then estimate forecasting model (25) of arbitrageurs, who seek to predict unexecuted bet
imbalances at each point of time using the last five realized bet imbalances and their squares.
This estimation is done on the entire simulated sample on a rolling-window basis.

Table 3 reports the results for the three bet shredding algorithms with n = 1%, n = 5%, and
1 = 10%. The lower is fraction n of volume targeted in the execution, the more execution is
extended over time, the more past imbalances are autocorrelated with current unexecuted im-
balances, and the larger are estimated coefficients. For example, when n = 1%, the coefficients
are 1.98, 0.97, 1.02, 1.25, and 5.32. When 1 = 10%, the coefficients are only 0.17, 0.16, 0.19,
0.30, and 0.89. Using these estimates, we construct predictive model (26) and price paths using
equation 4.

Figure 7 shows the averages, medians, and standard error bounds for returns autocorrela-
tion coefficients at different lags, ranging from one day to forty days for the simulated sample
under the assumption that there are no arbitrageurs. The four panels show the results for the
cases of n = 1%, 1 =5%, n = 10%, and the case with no shredding, i.e. 1 = co. As expected, when
there is no shredding, autocorrelations are equal to zero at all lags. In the other panels, auto-
correlations are high at fist lags, decaying with time. The lower is the fraction n of bet shredding
algorithm and the longer are execution horizons of large bets, the bigger autocorrelations at
first lags are and the slower they decay.

Figure 8 show the same statistics but under the assumption that there are arbitrageurs. Most
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of the autocorrelation coefficients are now close to zero, since arbitrageurs eliminate most of
returns predictability. Based on the linear terms and squared terms, their forecasting model
works reasonably well, except for reducing autocorrelations at the boundaries of their forecast-
ing window, which is assumed to have the length of five days in our example.

Table 4 presents the autocorrelations and their standard errors. As before, in panel A when
the model has no arbitrageurs, many of the coefficients are statistically bigger than zeros, es-
pecially when 7 is small. In panel B when we introduce arbitrageurs, most coefficients become
insignificant. For example, when 1 = 1%, the first-order autocorrelation is equal to 0.696 with
standard errors of 0.092 with no arbitrageurs and 0.033 with standard errors of 0.119 with arbi-
trageurs.

Figures 9 and 10 present distributions of the four moments of simulated returns for the cases
without and with arbitrageurs, respectively. There are distributions of the four moments in
the four columns. Each of the four rows corresponds to different bet-shredding methods with
n=1%, n = 5%, n = 10% as well as the case with no shredding. Table 5 reports the summary
statistics for these distributions. On both figures, the means and the skewness are centered
around zero, since the base model is symmetric for buy and sell orders. The volatility is much
lower than initially assumed daily volatility of o = 2% when there are no arbitrageurs, especially
when 7 is low. Intuitively, bet-shredding converts returns volatility into the price drift. Trad-
ing by arbitrageurs “restores” martingale properties of prices and brings volatility back to the
assumed levels. For example, when 1 = 1%, the daily volatility of simulated returns is equal to

0.005 with no arbitrageurs and 0.022 with arbitrageurs.

3 Properties of Implied Shredding Parameter

The properties of daily returns depend on the assumptions about parameters of the bet-shredding
algorithm. We next use the method of simulated moments and calibrate these parameters to
match empirical moments of daily returns.

As before, we assume that traders generate bets according to invariance, design execution
to target a given fraction 7 of expected daily volume, and split bets into equally-sized transac-
tions. Meanwhile, arbitrageurs apply the forecasting model described in section 2.5 and market
makers clear the market. We generate N = 1000 paths of daily returns. The bet-shredding pa-
rameter 7] is then estimated by matching the kurtoses of simulated returns kurt(AP|n, n) to the

empirical estimates of kurtoses kurt(AP|Data),

YN kurt(APn, n)
N

n* = argmin, ~ kurt(AP|Data)). (27)
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The empirical estimates are taken from table 1 for different trading activity groups and time
periods.

Table 6 reports the estimates of implied parameter ) for median stocks in the five out of ten
trading activity groups and for the seven decades from 1950 to 2017. The table also presents
information about trading activity used for simulation of daily returns; its values coincide with
statistics reported in table 1. There are two patterns.

First, the implied parameter ) decreases over time. For the stocks in group 1, parameter 7
decreased from 8.875 during 1950-1960 to 5.04 during 2010-2017. For the stocks in group 10,
parameter 1 decreased from 3.225 during 1950-1960 to 1.39 during 2010-2017. This implies
that, conditional of bet size, bet shredding increased over time. Similarly, ? document a signif-
icant change in trading patterns in the Trades and Quotes (TAQ) dataset, as the decimalization
and use of electronic interfaces has recently led to a significant increase in order shredding; the
market for block trades seems almost to have disappeared, and most trading is now dominated
by transactions of 100 shares, the minimum lot size. The feature of increased bet shredding
implied by our structural model suggests that it has reasonable properties.

Second, the implied parameter 1 decreases with trading activity W. For example, for the
time period 1990 through 2000, 1 is equal to 8.36, 4.22, 3.46, 2.52, and 1.66 for groups 1, 3, 5, 8,
and 10, respectively. For the time period 2010 through 2017, n is equal to 5.04, 2.69, 2.32, 1.80,
and 1.39, respectively. This implies that, conditional on bet size, execution of bets is spread over
longer periods for more actively traded stocks.

Table 7 shows implied execution horizons for the two periods before and after decimaliza-
tion. Panel A shows results for 1990-2000. Panel B shows results for 2010-2017. We calculate
bet sizes using equation (3) and then calculate implied execution horizons using equation (17)
and calibrated bet-shredding parameters 7) from table 6. For the median stock in group 1, it
takes 2.69, 13.22, 64.86, and 318.23 minutes to execute 4-std, 5-std, 6-std, and 7-std bets during
1990-2000, respectively, and 0.79, 3.86, 18.93, and 92.87 minutes for similar bets during 2010-
2017. For the median stock in group 10, it takes 0.17, 0.85, 4.16, and 20.39 minutes to execute
4-std, 5-std, 6-std, and 7-std bets during 1990-2000, respectively, and 0.05, 0.26, 1.29, and 6.32
minutes for similar bets during 2010-2017. The speed of execution increased by a factor of 3.

The inspection of estimates in table 7 reveals that differences in bet-shredding parameters
are similar to differences in trading activity in —1/3 power. For example, the ratio in parame-
ters 17; and n; for stock i and j are related to the ratio of their trading activities W; and W; as

approximately,
ﬂ - (%)—1/3
nj Wi

We can also extrapolate these estimates to the overall market with daily trading volume of

(28)
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$292 billion (futures and stocks combined) and daily volatility of 2 percent, as noted in Kyle and
Obizhaeva (2016a). Using parameters for the median stock in group 10 during 2010-2017 as
the benchmark, equation (28) implies that bet-shredding parameter for the entire U.S. market
Mmkt ~ 1.39- (MIVW)‘” 3 %20.20, i.e. traders are targeting about 20 percent of expected con-
temporaneous volume when executing bets in the U.S. market. This is broadly consistent with
information in Staffs of the CFTC and SEC (2010b) that the large trader whose trading caused
the Flash crash on May 6, 2010, has been targeting 9 percents of contemporaneous volume

when executing a bet in the E-mini S&P500 futures market.

4 Conclusions

We propose a new structural model of stock returns dynamics, which is inspired by the recently
developed ideas of market microstructure invariance. Traders generate investment ideas, or
bets, and execute them by shredding large orders over time to minimize transaction costs, ar-
bitrageurs trade to profit on any detectable trends in prices, and market makers clear the mar-
ket. Bets are assumed to arrive according to the processes calibrated by Kyle and Obizhaeva
(2016b); parameters of bet-shredding algorithms are chosen to match empirical moments of
stock returns.

Our structural model captures realistically the economics of trading. It is the model of
stochastic volatility, because arrival of bets and their sizes are stochastic, and large bets lead
to bursts in volume, volatility, and intermediation. The model is flexible in terms of modelling
trading behavior of arbitrageurs and bet-shredding algorithms, while precise and grounded in
theory in terms of using a specific structure of bet flow from traders and intermediaries. It can
be calibrated either to fit the data or to infer the implied parameters of trading, for example,
such as hard-to-observe bet-shredding parameters.

We focus mostly on the price dynamics, but the framework also generates quantitative pre-
dictions about overall trading volume and order flow generated by different groups of traders.
As an extension, it is possible to calibrate the model to match cross-sectional and time-series
properties of both stock returns and trading volume, or even some empirical findings about

trading by different groups of traders, for example, such as defined in Kirilenko et al. (2010).
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Figure 1: Idiosyncratic Kurtosis of Daily Stock Returns for 1950 through 2016.
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Figure shows five monthly time series of 12-month moving averages of median sample kurtosis for idiosyncratic daily
stock returns for each of the five trading activity groups (groups 1, 3, 5, 8, and 10 out of ten groups). Group 1 (10) contains
the least (most) actively traded stocks. The period ranges from January 1950 to December 2016.
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Figure 2: Ratio of Idiosyncratic Kurtosis (Group 1 to Group 10) for 1950 through 2016.
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Figure shows the time series of ratio of median sample kurtosis of idiosyncratic daily stock returns for stocks in Group 1
(least actively traded stocks) to the one of Group 10 (most actively traded stocks). The horizontal line marks the value of

one. The sample ranges from January 1950 to December 2016.
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Figure 3: Kurtosis of Daily Stock Returns for 1950 through 2016.
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Figure shows five monthly time series of 12-month moving average of median sample kurtosis of daily stock returns for
each of the five trading activity groups (groups 1, 3, 5, 8, and 10 out of ten groups). Group 1 (10) contains the least (most)
actively traded stocks. The period ranges from January 1950 to December 2016.
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Figure 4: Ratio of Kurtosis (Group 1 to Group 10) for 1950 through 2016.
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Figure shows the time series of ratio of median sample kurtosis of daily stock returns for stocks in Group 1 (least actively
traded stocks) to the one of Group 10 (most actively traded stocks). The horizontal line marks the value of one. The

sample ranges from January 1950 to December 2016.
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Figure 5: Idiosyncratic Skewness of Daily Stock Returns for 1950 through 2016.
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Figure shows five monthly time series of 12-month moving average of median sample skewness of idiosyncratic daily
stock returns for each of the five trading activity groups (groups 1, 3, 5, 8, and 10 out of ten groups). Group 1 (10) contains
the least (most) actively traded stocks. The period ranges from January 1950 to December 2016.
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Figure 6: Idiosyncratic Volatility of Daily Stock Returns for 1950 through 2016.
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Figure shows five monthly time series of 12-month moving average of median sample volatility of idiosyncratic daily
stock returns for each of the five trading activity groups (groups 1, 3, 5, 8, and 10 out of ten groups). Group 1 (10)
contains the least (most) actively traded stocks. The period ranges from January 1950 to December 2016.



Table 1: Kurtosis and Skewness for Trading activity Groups across Decades

Groupl Group3 Group5 Group8 Groupl0 Total
Decade 1950-1960

Activity 101 517 967 1,926 5,925 440
Kurtosis 7.174 4.253 4.387 3.205 2.656 4.825
Skewness 0.199 0.243 0.305 0.317 0.357 0.262
# Stocks 676 766 623 511 328

Decade 1960-1970

Activity 277 1,650 3,375 6,999 26,727 1,197
Kurtosis 8.472 5.419 5.188 4.141 2.972 6.002
Skewness 0.303 0.306 0.303 0.302 0.338 0.310
# Stocks 2,126 1,839 1,378 1,056 557

Decade 1970-1980

Activity 210 2,249 5,103 11,519 39,913 1,284
Kurtosis 6.605 5.511 4.928 4.327 3.289 5.627
Skewness 0.182 0.210 0.178 0.159 0.076 0.179
# Stocks 3,697 1,894 1,435 1,028 583

Decade 1980-1990

Activity 1,176 12,893 29,588 70,470 271,798 4,935
Kurtosis 7.133 5.734 4.939 4.321 2.851 5.938
Skewness 0.144 0.201 0.192 0.205 0.157 0.173
# Stocks 5,642 3,084 1,852 1,236 677

Decade 1990-2000
Activity 2,895 38,104 88,975 245,021 1,232,159 14,012

Kurtosis 8.102 6.450 6.174 5.226 4.220 6.884
Skewness 0.098 0.184 0.202 0.197 0.192 0.143
# Stocks 7,721 5,082 3,265 2,237 1,089

Decade 2000-2010

Activity 8,640 190,720 468,578 1,364,880 6,704,911 62,135
Kurtosis 7.583 5.963 5.491 4.699 4.002 6.542
Skewness 0.059 0.098 0.087 0.106 0.096 0.076
# Stocks 5,894 3,545 2,398 1,736 820

Decade 2010-2017
Activity 18,363 411,722 940,703 2,216,188 7,141,896 83,929

Kurtosis 6.808 6.315 6.085 4.918 4.232 6.396
Skewness 0.107 0.074 0.075 0.077 0.098 0.096
# Stocks 3,364 1,659 1,018 766 441

Table presents the sample medians ot trading activity, idiosyncratic skewness, and idiosyn-
cratic kurtosis as well as the number of stocks for the ten groups of U.S. stocks, based on
their trading activity. The sample ranges from January 1950 to December 2016 and split
into decades. Group 1 (10) consists of stocks with lowest (highest) trading activity in the
previous three months. 29



Table 2: Simulated Theoretical Kurtosis and Low Bounds.
Groupl Group3 Group5 Group8 Group 10
Trading Activity 8,000 210,000 460,000 1,000,000 3,600,000

Number of Bets 4 35 59 99 232
Avg Kurtosis 7,214 651 381 225 95
Stand. Error (4.81) (0.12) (0.06) (0.02) (0.01)

Low Bound 5,576 631 374 259 95
%A 29% 3% 2% 1% 0%

Table reports trading activity o - V - P, bet arrival rate per day vy, the average daily returns
kurtosis and its standard errors of the means from Monte-carlo simulations, low bound for
kurtosis, and percentage difference between the average kurtosis and the low bound for the
median stock in each of the five trading activity groups (groups 1, 3, 5, 8, and 10 out of ten
groups). Group 1 (10) contains the least (most) actively traded stocks.

30



Table 3: Imbalance Forecasting Model of Arbitrageurs.

Shredding const Sir1 S5, Sit—2 S7,, Sit-3 Si, 3 Sit-a S, Sits Si,5 R
n=1% 39,719 198 0.00 097 000 1.02 000 125 000 532 000 12%
1n="5% 32,925 037 0.00 029 000 034 000 048 000 149 0.00 13%
n=10% 12,190 0.7 -0.00 0.6 -0.00 019 -0.00 030 0.00 089 -0.00 13%

Table reports estimates f; jand B j» J =1,.5 of arbitrageurs’ model for forecasting unexe-
cuted imbalances

5 5
2
S;‘t’n—S”,n =a+ Z ,31]' 'Si,t—j,n+ Z ,32]' 'Si,t—j,n+€m’ t=1,.T,n=1,..N,
j=1 J=1

estimated based on the simulated sample for a benchmark stock with daily volatility 2 per-
cent, price $40, and daily volume 1 million shares. The simulated sample consist of 90-day
paths. The three bet-shredding algorithms are used: “Method-V (1%)”, “Method-V (5%)”,
and “Method-V (10%)".
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Figure 7: Returns Autocorrelations without arbitrager.
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Figure shows autocorrelation coefficients of daily returns at different lags for dif-
ferent models of bet shredding without arbitragers: “Method-V(1%)”, “Method-
V(56%)”, “Method-V (10%)”, and no bet shredding. The simulation consists of 90-day
paths. There are averages, medians, and standard errors of autocorrelation coeffi-
cients in dark solid, dashed, and light solid lines, respectively.
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Figure 8: Returns Autocorrelations with arbitrager.
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Figure shows average autocorrelation coefficients of daily returns at different lags
for different models of bet shredding with arbitragers: “Method-V (1%)”, “Method-
V(56%)”, “Method-V (10%)”, and no bet shredding. The simulation consists of 90-day
paths. There are averages, medians, and standard errors of autocorrelation coeffi-
cients in dark solid, dashed, and light solid lines, respectively.
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Table 4: Returns Autocorrelations.
ORDER OF AUTOCORRELATION
lag 1 lag 2 lag 3 lag5 lag10 lag20

PANEL A: MODEL WITHOUT ARBITRAGERS

n=1% 0.696 0.523 0.417 0.294 0.157 0.068
(0.092) (0.128) (0.152) (0.172) (0.194) (0.211)
n=5% 0.437 0.249 0.167 0.094 0.038 0.009
(0.101) (0.119) (0.127) (0.137) (0.133) (0.138)
n=10% 0.331 0.125 0.096 0.051 0.025  -0.001

(0.106) (0.114) (0.119) (0.121) (0.118) (0.127)
No Shredding -0.001  -0.002  0.001 0.000 0.000 0.000
(0.093) (0.091) (0.099) (0.099) (0.099) (0.10)

PANEL B: MODEL WITH ARBITRAGERS

n=1% 0.033 0.047 0.098 -0.16 -0.052  -0.005
(0.119) (0.140) (0.106) (0.103) (0.122) (0.130)
1n=5% 0.085 0.093 0.157 0.41 -0.04 0.002
(0.131) (0.150) (0.111) (0.114) (0.133) (0.141)
n=10% 0.123 0.094 0.14 0.413  -0.022  0.000

(0.132) (0.150) (0.115) (0.120) (0.132) (0.140)
No Shredding -0.001 -0.002  0.001 0.000 0.000 0.000
(0.093) (0.091) (0.099) (0.099) (0.099) (0.10)

Table reports average autocorrelation coefficients of daily returns at different lags for differ-
ent models of bet shredding: “Method-V (1%)”, “Method-V (5%)”, “Method-V (10%)”, and no
bet shredding. Panel A presents results for the model without arbitragers. Panel B presents
results for the model with arbitragers. The simulation consists of 90-day paths.
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Figure 9: Distributions of simulated moments without arbitrageurs
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Figure shows distributions of simulated moments of order flow for a benchmark stock. There are 1000 simulations of 90-

day paths of returns. The case with no bet shredding and the three bet-shredding algorithms are used: “Method-V (1%)”,
“Method-V (5%)”, and “Method-V (10%)".
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Figure 10: Distributions of simulated moments with arbitrageurs
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Figure shows distributions of simulated moments of order flow for a benchmark stock with arbitrageurs. There are
simulations of 90-day paths of returns. The case with no bet shredding and the three bet-shredding algorithms are used:
“Method-V (1%)”, “Method-V(5%)”, and “Method-V (10%)".



Table 5: Summary Statistics for Daily Returns.
n=1% n=5% n=10% No Shredding

PANEL A: MODEL WITHOUT ARBITRAGER

Mean 0.000 0.000 0.000 0.000
(0.002) (0.002) (0.002) (0.002)

St.dev 0.005 0.010 0.012 0.021
(0.001) (0.001) (0.001) (0.005)

Skewness  0.252 0.722 0.451 8.564

(140) (74) (61) (178)

Kurtosis 0.927 0.338 0.281 7.331
(1.745) (0.632) (0.556) (10.421)

PANEL B: MODEL WITH ARBITRAGER

Mean 0.000 0.000 0.000 0.000
(0.002) (0.002) (0.002) (0.002)

St.dev 0.022 0.017 0.017 0.021
(0.002) (0.002) (0.002) (0.005)

Skewness -1.152 -0.497  -0.457 8.564

(46) (48) (49) (178)

Kurtosis 0.517 0.229 0.171 7.331
(0.943) (0.553) (0.556) (10.421)

Table reports statistics for simulated daily returns such as mean, standard deviation, skew-
ness, and kurtosis for different models of bet shredding: “Method-V(1%)”, “Method-
V(5%)”, “Method-V (10%)”, and no bet shredding. Panel A presents results for the model
without arbitragers. Panel B presents results for the model with arbitragers. The simulation
consists of 90-day paths.
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Table 6: Calibrated Bet-Shredding Parameters.
Groupl Group3 Group5 Group8 Group 10

Decade 1950-1960

w 101 517 967 1,926 5,925

f] 8.875 6.288 6.500 3.675 3.225
Decade 1960-1970

w 277 1,650 3,375 6,999 26,727

f] 9.400 6.888 5.200 4.013 2.588
Decade 1970-1980

w 210 2,249 5,103 11,519 39,913

fl 9.40 6.89 5.20 4.01 2.59

Decade 1980-1990

w 1,176 12,893 29,588 70,470 271,798
9.17 4.84 3.71 2.79 1.59

>

Decade 1990-2000

w 2,895 38,104 88,975 245,021 1,232,159
8.36 4.22 3.46 2.52 1.66

>

Decade 2000-2010

w 8,640 190,720 468,578 1,364,880 6,704,911
6.34 2.94 2.41 1.79 1.37

>

Decade 2010-2017

W 18,363 411,722 940,703 2,216,188 7,141,896
7l 5.04 2.69 2.32 1.80 1.39

Table presents calibrated parameter n and trading activity W for the median stocks in the
five trading activity groups and for each decade for the period 1950 through 2017.
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Table 7: Implied Execution Horizons.
Groupl Group3 Group5 Group8 Group 10

Panel A: Decade 1990-2000

w 2,895 38,104 88,975 245,021 1,232,159
f) 8.36 4.22 3.46 2.52 1.66
std-1 0.02 0.01 0.01 0.00 0.00
std-2 0.11 0.04 0.02 0.02 0.01
std-3 0.55 0.18 0.12 0.08 0.04
std-4 2.69 0.91 0.60 0.39 0.17
std-5 13.22 4.44 2.93 1.92 0.85
std-6 64.86 21.80 14.36 9.42 4.16
std-7  318.23 106.96 70.46 46.22 20.39

Panel B: Decade 2010-2017

w 18,363 411,722 940,703 2,216,188 7,141,896
f 5.04 2.69 2.32 1.80 1.39
std-1 0.01 0.00 0.00 0.00 0.00
std-2 0.03 0.01 0.01 0.00 0.00
std-3 0.16 0.04 0.03 0.02 0.01
std-4 0.79 0.19 0.12 0.09 0.05
std-5 3.86 0.91 0.61 0.44 0.26
std-6 18.93 4.46 2.98 2.17 1.29
std-7 92.87 21.88 14.63 10.65 6.32

Table presents implied execution horizons for bets of different sizes for different trading
activity groups and time periods. There are calibrated parameter 7, trading activity W, and
execution horizons (in minutes) for 1 through 7 standard deviation bets.

39



